Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Learning Algorithm for the Beta Basis Function Neural Network (1210.8124v1)

Published 30 Oct 2012 in cs.NE and cs.AI

Abstract: The paper presents a two-level learning method for the design of the Beta Basis Function Neural Network BBFNN. A Genetic Algorithm is employed at the upper level to construct BBFNN, while the key learning parameters :the width, the centers and the Beta form are optimised using the gradient algorithm at the lower level. In order to demonstrate the effectiveness of this hierarchical learning algorithm HLABBFNN, we need to validate our algorithm for the approximation of non-linear function.

Citations (10)

Summary

We haven't generated a summary for this paper yet.