Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Preperiodic points for families of rational map (1210.7715v1)

Published 29 Oct 2012 in math.NT and math.DS

Abstract: Let X be a smooth curve defined over the algebraic numbers, let a,b be algebraic numbers, and let f_l(x) be an algebraic family of rational maps indexed by all l in X. We study whether there exist infinitely many l in X such that both a and b are preperiodic for f_l. In particular we show that if P,Q are polynomials over the algebraic numbers such that deg(P) >= 2+deg(Q), and there exists l such that a is periodic for P(x)/Q(x) + l, but b is not preperiodic for P(x)/Q(x) + l, then there exist at most finitely many l such that both a and b are preperiodic for P(x)/Q(x)+l. We also prove a similar result for certain two-dimensional families of endomorphisms of P2.

Summary

We haven't generated a summary for this paper yet.