Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Rounding for the Noncommutative Grothendieck Inequality (1210.7656v2)

Published 29 Oct 2012 in cs.DS

Abstract: $ \newcommand{\cclass}[1]{{\textsf{#1}}} $The classical Grothendieck inequality has applications to the design of approximation algorithms for $\cclass{NP}$-hard optimization problems. We show that an algorithmic interpretation may also be given for a noncommutative generalization of the Grothendieck inequality due to Pisier and Haagerup. Our main result, an efficient rounding procedure for this inequality, leads to a polynomial-time constant-factor approximation algorithm for an optimization problem which generalizes the Cut Norm problem of Frieze and Kannan, and is shown here to have additional applications to robust principal component analysis and the orthogonal Procrustes problem.

Citations (51)

Summary

We haven't generated a summary for this paper yet.