Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 106 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 228 tok/s Pro
2000 character limit reached

Multi-marginal optimal transport and multi-agent matching problems: uniqueness and structure of solutions (1210.7372v1)

Published 27 Oct 2012 in math.AP

Abstract: We prove uniqueness and Monge solution results for multi-marginal optimal transportation problems with a certain class of surplus functions; this class arises naturally in multi-agent matching problems in economics. This result generalizes a seminal result of Gangbo and \'Swi\c{e}ch on multi-marginal problems. Of particular interest, we show that this also yields a partial generalization of the Gangbo-\'Swi\c{e}ch result to manifolds; alternatively, we we can think of this as a partial extension of McCann's theorem for quadratic costs on manifolds to the multi-marginal setting. We also show that the class of surplus functions considered here neither contains, nor is contained in, another class of surpluses studied by the present author, which also generalized Gangbo and \'Swi\c{e}ch's result.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)