Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Edge-colouring seven-regular planar graphs (1210.7349v1)

Published 27 Oct 2012 in cs.DM and math.CO

Abstract: A conjecture due to the fourth author states that every $d$-regular planar multigraph can be $d$-edge-coloured, provided that for every odd set $X$ of vertices, there are at least $d$ edges between $X$ and its complement. For $d = 3$ this is the four-colour theorem, and the conjecture has been proved for all $d\le 8$, by various authors. In particular, two of us proved it when $d=7$; and then three of us proved it when $d=8$. The methods used for the latter give a proof in the $d=7$ case that is simpler than the original, and we present it here.

Citations (14)

Summary

We haven't generated a summary for this paper yet.