Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Optimization: Convergence Conditions from a Dynamical System Perspective (1210.6685v1)

Published 24 Oct 2012 in cs.SY, cs.DC, and math.OC

Abstract: This paper explores the fundamental properties of distributed minimization of a sum of functions with each function only known to one node, and a pre-specified level of node knowledge and computational capacity. We define the optimization information each node receives from its objective function, the neighboring information each node receives from its neighbors, and the computational capacity each node can take advantage of in controlling its state. It is proven that there exist a neighboring information way and a control law that guarantee global optimal consensus if and only if the solution sets of the local objective functions admit a nonempty intersection set for fixed strongly connected graphs. Then we show that for any tolerated error, we can find a control law that guarantees global optimal consensus within this error for fixed, bidirectional, and connected graphs under mild conditions. For time-varying graphs, we show that optimal consensus can always be achieved as long as the graph is uniformly jointly strongly connected and the nonempty intersection condition holds. The results illustrate that nonempty intersection for the local optimal solution sets is a critical condition for successful distributed optimization for a large class of algorithms.

Citations (4)

Summary

We haven't generated a summary for this paper yet.