Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces (1210.6237v2)

Published 23 Oct 2012 in math.FA

Abstract: Classical and non classical Besov and Triebel-Lizorkin spaces with complete range of indices are developed in the general setting of Dirichlet space with a doubling measure and local scale-invariant Poincar\'e inequality. This leads to Heat kernel with small time Gaussian bounds and H\"older continuity, which play a central role in this article. Frames with band limited elements of sub-exponential space localization are developed, and frame and heat kernel characterizations of Besov and Triebel-Lizorkin spaces are established. This theory, in particular, allows to develop Besov and Triebel-Lizorkin spaces and their frame and heat kernel characterization in the context of Lie groups, Riemannian manifold, and other settings.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.