Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Syndetic submeasures and partitions of $G$-spaces and groups (1210.5804v5)

Published 22 Oct 2012 in math.GR and math.GN

Abstract: We prove that for every number k each countable infinite group $G$ admits a partition $G=A\cup B$ into two sets which are $k$-meager in the sense that for every $k$-element subset $K\subset G$ the sets $KA$ and $KB$ are not thick. The proof is based on the fact that $G$ possesses a syndetic submeasure, i.e., a left-invariant submeasure $\mu:\mathcal P(G)\to[0,1]$ such that for each $\epsilon > 1/|G|$ and subset $A\subset G$ with $\mu(A)<1$ there is a set $B\subset G\setminus A$ such that $\mu(B)<\epsilon$ and $FB=G$ for some finite subset $F\subset G$.

Summary

We haven't generated a summary for this paper yet.