Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
99 tokens/sec
Gemini 2.5 Pro Premium
56 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
99 tokens/sec
GPT OSS 120B via Groq Premium
507 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Dynamics And Kinetic Limit For A System Of Noiseless D-Dimensional Vicsek-Type Particles (1210.5746v2)

Published 21 Oct 2012 in math-ph, math.AP, math.CA, and math.MP

Abstract: We analyze the continuous time evolution of a $d$-dimensional system of $N$ self propelled particles with a kinematic constraint on the velocities inspired by the original Vicsek's one \cite{VCB-JCS}. Interactions among particles are specified by a pairwise potential in such a way that the velocity of any given particle is updated to the weighted average velocity of all those particles interacting with it. The weights are given in terms of the interaction rate function. When the size of the system is fixed, we show the existence of an invariant manifold in the phase space and prove its exponential asymptotic stability. In the kinetic limit we show that the particle density satisfies a nonlinear kinetic equation of Vlasov type, under suitable conditions on the interaction. We study the qualitative behaviour of the solution and we show that the Boltzmann-Vlasov entropy is strictly decreasing in time.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.