Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
84 tokens/sec
Gemini 2.5 Pro Premium
49 tokens/sec
GPT-5 Medium
16 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
476 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Asymptotically optimal nonparametric empirical Bayes via predictive recursion (1210.5235v1)

Published 18 Oct 2012 in math.ST and stat.TH

Abstract: An empirical Bayes problem has an unknown prior to be estimated from data. The predictive recursion (PR) algorithm provides fast nonparametric estimation of mixing distributions and is ideally suited for empirical Bayes applications. This paper presents a general notion of empirical Bayes asymptotic optimality, and it is shown that PR-based procedures satisfy this property under certain conditions. As an application, the problem of in-season prediction of baseball batting averages is considered. There the PR-based empirical Bayes rule performs well in terms of prediction error and ability to capture the distribution of the latent features.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)