Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
94 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
38 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
518 tokens/sec
Kimi K2 via Groq Premium
188 tokens/sec
2000 character limit reached

Influence of the Dynamic Social Network Timeframe Type and Size on the Group Evolution Discovery (1210.5167v1)

Published 18 Oct 2012 in cs.SI and physics.soc-ph

Abstract: New technologies allow to store vast amount of data about users interaction. From those data the social network can be created. Additionally, because usually also time and dates of this activities are stored, the dynamic of such network can be analysed by splitting it into many timeframes representing the state of the network during specific period of time. One of the most interesting issue is group evolution over time. To track group evolution the GED method can be used. However, choice of the timeframe type and length might have great influence on the method results. Therefore, in this paper, the influence of timeframe type as well as timeframe length on the GED method results is extensively analysed.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.