Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Latent Dirichlet Allocation Uncovers Spectral Characteristics of Drought Stressed Plants (1210.4919v1)

Published 16 Oct 2012 in cs.LG, cs.CE, and stat.ML

Abstract: Understanding the adaptation process of plants to drought stress is essential in improving management practices, breeding strategies as well as engineering viable crops for a sustainable agriculture in the coming decades. Hyper-spectral imaging provides a particularly promising approach to gain such understanding since it allows to discover non-destructively spectral characteristics of plants governed primarily by scattering and absorption characteristics of the leaf internal structure and biochemical constituents. Several drought stress indices have been derived using hyper-spectral imaging. However, they are typically based on few hyper-spectral images only, rely on interpretations of experts, and consider few wavelengths only. In this study, we present the first data-driven approach to discovering spectral drought stress indices, treating it as an unsupervised labeling problem at massive scale. To make use of short range dependencies of spectral wavelengths, we develop an online variational Bayes algorithm for latent Dirichlet allocation with convolved Dirichlet regularizer. This approach scales to massive datasets and, hence, provides a more objective complement to plant physiological practices. The spectral topics found conform to plant physiological knowledge and can be computed in a fraction of the time compared to existing LDA approaches.

Citations (7)

Summary

We haven't generated a summary for this paper yet.