Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring Strategies from Limited Reconnaissance in Real-time Strategy Games (1210.4880v1)

Published 16 Oct 2012 in cs.AI, cs.GT, and cs.LG

Abstract: In typical real-time strategy (RTS) games, enemy units are visible only when they are within sight range of a friendly unit. Knowledge of an opponent's disposition is limited to what can be observed through scouting. Information is costly, since units dedicated to scouting are unavailable for other purposes, and the enemy will resist scouting attempts. It is important to infer as much as possible about the opponent's current and future strategy from the available observations. We present a dynamic Bayes net model of strategies in the RTS game Starcraft that combines a generative model of how strategies relate to observable quantities with a principled framework for incorporating evidence gained via scouting. We demonstrate the model's ability to infer unobserved aspects of the game from realistic observations.

Citations (25)

Summary

We haven't generated a summary for this paper yet.