Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Theory of Goal-Oriented MDPs with Dead Ends (1210.4875v1)

Published 16 Oct 2012 in cs.AI

Abstract: Stochastic Shortest Path (SSP) MDPs is a problem class widely studied in AI, especially in probabilistic planning. They describe a wide range of scenarios but make the restrictive assumption that the goal is reachable from any state, i.e., that dead-end states do not exist. Because of this, SSPs are unable to model various scenarios that may have catastrophic events (e.g., an airplane possibly crashing if it flies into a storm). Even though MDP algorithms have been used for solving problems with dead ends, a principled theory of SSP extensions that would allow dead ends, including theoretically sound algorithms for solving such MDPs, has been lacking. In this paper, we propose three new MDP classes that admit dead ends under increasingly weaker assumptions. We present Value Iteration-based as well as the more efficient heuristic search algorithms for optimally solving each class, and explore theoretical relationships between these classes. We also conduct a preliminary empirical study comparing the performance of our algorithms on different MDP classes, especially on scenarios with unavoidable dead ends.

Citations (90)

Summary

We haven't generated a summary for this paper yet.