Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Recognition of Simple-Triangle Graphs and of Linear-Interval Orders is Polynomial (1210.4352v2)

Published 16 Oct 2012 in cs.DS, cs.DM, and math.CO

Abstract: Intersection graphs of geometric objects have been extensively studied, both due to their interesting structure and their numerous applications; prominent examples include interval graphs and permutation graphs. In this paper we study a natural graph class that generalizes both interval and permutation graphs, namely \emph{simple-triangle} graphs. Simple-triangle graphs - also known as \emph{PI} graphs (for Point-Interval) - are the intersection graphs of triangles that are defined by a point on a line $L_{1}$ and an interval on a parallel line $L_{2}$. They lie naturally between permutation and trapezoid graphs, which are the intersection graphs of line segments between $L_{1}$ and $L_{2}$ and of trapezoids between $L_{1}$ and $L_{2}$, respectively. Although various efficient recognition algorithms for permutation and trapezoid graphs are well known to exist, the recognition of simple-triangle graphs has remained an open problem since their introduction by Corneil and Kamula three decades ago. In this paper we resolve this problem by proving that simple-triangle graphs can be recognized in polynomial time. As a consequence, our algorithm also solves a longstanding open problem in the area of partial orders, namely the recognition of \emph{linear-interval orders}, i.e. of partial orders $P=P_{1}\cap P_{2}$, where $P_{1}$ is a linear order and $P_{2}$ is an interval order. This is one of the first results on recognizing partial orders $P$ that are the intersection of orders from two different classes $\mathcal{P}{1}$ and $\mathcal{P}{2}$. In complete contrast to this, partial orders $P$ which are the intersection of orders from the same class $\mathcal{P}$ have been extensively investigated, and in most cases the complexity status of these recognition problems has been already established.

Citations (22)

Summary

We haven't generated a summary for this paper yet.