Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extending modularity by capturing the similarity attraction feature in the null model (1210.4007v3)

Published 15 Oct 2012 in cs.SI, physics.data-an, and physics.soc-ph

Abstract: Modularity is a widely used measure for evaluating community structure in networks. The definition of modularity involves a comparison of within-community edges in the observed network and that number in an equivalent randomized network. This equivalent randomized network is called the null model, which serves as a reference. To make the comparison significant, the null model should characterize some features of the observed network. However, the null model in the original definition of modularity is unrealistically mixed, in the sense that any node can be linked to any other node without preference and only connectivity matters. Thus, it fails to be a good representation of real-world networks. A common feature of many real-world networks is "similarity attraction", i.e., edges tend to link to nodes that are similar to each other. We propose a null model that captures the similarity attraction feature. This null model enables us to create a framework for defining a family of Dist-Modularity adapted to various networks, including networks with additional information on nodes. We demonstrate that Dist-Modularity is useful in identifying communities at different scales.

Citations (6)

Summary

We haven't generated a summary for this paper yet.