Hyperplane Separation Technique for Multidimensional Mean-Payoff Games (1210.3141v2)
Abstract: We consider both finite-state game graphs and recursive game graphs (or pushdown game graphs), that can model the control flow of sequential programs with recursion, with multi-dimensional mean-payoff objectives. In pushdown games two types of strategies are relevant: global strategies, that depend on the entire global history; and modular strategies, that have only local memory and thus do not depend on the context of invocation. We present solutions to several fundamental algorithmic questions and our main contributions are as follows: (1) We show that finite-state multi-dimensional mean-payoff games can be solved in polynomial time if the number of dimensions and the maximal absolute value of the weight is fixed; whereas if the number of dimensions is arbitrary, then problem is already known to be coNP-complete. (2) We show that pushdown graphs with multi-dimensional mean-payoff objectives can be solved in polynomial time. (3) For pushdown games under global strategies both single and multi-dimensional mean-payoff objectives problems are known to be undecidable, and we show that under modular strategies the multi-dimensional problem is also undecidable (whereas under modular strategies the single dimensional problem is NP-complete). We show that if the number of modules, the number of exits, and the maximal absolute value of the weight is fixed, then pushdown games under modular strategies with single dimensional mean-payoff objectives can be solved in polynomial time, and if either of the number of exits or the number of modules is not bounded, then the problem is NP-hard. (4) Finally we show that a fixed parameter tractable algorithm for finite-state multi-dimensional mean-payoff games or pushdown games under modular strategies with single-dimensional mean-payoff objectives would imply the solution of the long-standing open problem of fixed parameter tractability of parity games.