Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A weighted least squares procedure to approximate least absolute deviation estimation in time series with specific reference to infinite variance unit root problems (1210.2254v1)

Published 8 Oct 2012 in stat.CO

Abstract: A weighted regression procedure is proposed for regression type problems where the innovations are heavy-tailed. This method approximates the least absolute regression method in large samples, and the main advantage will be if the sample is large and for problems with many independent variables. In such problems bootstrap methods must often be utilized to test hypotheses and especially in such a case this procedure has an advantage over least absolute regression. The procedure will be illustrated on first-order autoregressive problems, including the random walk. A bootstrap procedure is used to test the unit root hypothesis and good results were found.

Summary

We haven't generated a summary for this paper yet.