Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nuclear dimension, Z-stability, and algebraic simplicity for stably projectionless C*-algebras (1210.2237v2)

Published 8 Oct 2012 in math.OA and math.FA

Abstract: The main result here is that a simple separable C*-algebra is Z-stable (where Z denotes the Jiang-Su algebra) if (i) it has finite nuclear dimension or (ii) it is approximately subhomogeneous with slow dimension growth. This generalizes the main results of [Toms, "K-theoretic rigidity and slow dimension growth"; Winter, "Nuclear dimension and Z-stability of pure C*-algebras"] to the nonunital setting. As a consequence, finite nuclear dimension implies Z-stability even in the case of a separable C*-algebra with finitely many ideals. Algebraic simplicity is established as a fruitful weakening of being simple and unital, and the proof of the main result makes heavy use of this concept.

Summary

We haven't generated a summary for this paper yet.