Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the moving contact line singularity: Asymptotics of a diffuse-interface model (1210.1724v2)

Published 5 Oct 2012 in physics.flu-dyn, math-ph, and math.MP

Abstract: The behaviour of a solid-liquid-gas system near the three-phase contact line is considered using a diffuse-interface model with no-slip at the solid and where the fluid phase is specified by a continuous density field. Relaxation of the classical approach of a sharp liquid-gas interface and careful examination of the asymptotic behaviour as the contact line is approached is shown to resolve the stress and pressure singularities associated with the moving contact line problem. Various features of the model are scrutinised, alongside extensions to incorporate slip, finite-time relaxation of the chemical potential, or a precursor film at the wall.

Summary

We haven't generated a summary for this paper yet.