Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Controlled Collaboration for Linear Coherent Estimation in Wireless Sensor Networks (1210.1624v2)

Published 5 Oct 2012 in cs.IT and math.IT

Abstract: We consider a wireless sensor network consisting of multiple nodes that are coordinated by a fusion center (FC) in order to estimate a common signal of interest. In addition to being coordinated, the sensors are also able to collaborate, i.e., share observations with other neighboring nodes, prior to transmission. In an earlier work, we derived the energy-optimal collaboration strategy for the single-snapshot framework, where the inference has to be made based on observations collected at one particular instant. In this paper, we make two important contributions. Firstly, for the single-snapshot framework, we gain further insights into partially connected collaboration networks (nearest-neighbor and random geometric graphs for example) through the analysis of a family of topologies with regular structure. Secondly, we explore the estimation problem by adding the dimension of time, where the goal is to estimate a time-varying signal in a power-constrained network. To model the time dynamics, we consider the stationary Gaussian process with exponential covariance (sometimes referred to as Ornstein-Uhlenbeck process) as our representative signal. For such a signal, we show that it is always beneficial to sample as frequently as possible, despite the fact that the samples get increasingly noisy due to the power-constrained nature of the problem. Simulation results are presented to corroborate our analytical results.

Citations (9)

Summary

We haven't generated a summary for this paper yet.