Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability and instability for subsonic travelling waves of the Nonlinear Schrödinger Equation in dimension one (1210.1322v1)

Published 4 Oct 2012 in math.AP

Abstract: We study the stability/instability of the subsonic travelling waves of the Nonlinear Schr\"odinger Equation in dimension one. Our aim is to propose several methods for showing instability (use of the Grillakis-Shatah-Strauss theory, proof of existence of an unstable eigenvalue via an Evans function) or stability. For the later, we show how to construct in a systematic way a Liapounov functional for which the travelling wave is a local minimizer. These approaches allow to give a complete stability/instability analysis in the energy space including the critical case of the kink solution. We also treat the case of a cusp in the energy-momentum diagram.

Summary

We haven't generated a summary for this paper yet.