Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Locality-Constrained Collaborative Representation for Face Recognition (1210.1316v2)

Published 4 Oct 2012 in cs.CV

Abstract: The model of low-dimensional manifold and sparse representation are two well-known concise models that suggest each data can be described by a few characteristics. Manifold learning is usually investigated for dimension reduction by preserving some expected local geometric structures from the original space to a low-dimensional one. The structures are generally determined by using pairwise distance, e.g., Euclidean distance. Alternatively, sparse representation denotes a data point as a linear combination of the points from the same subspace. In practical applications, however, the nearby points in terms of pairwise distance may not belong to the same subspace, and vice versa. Consequently, it is interesting and important to explore how to get a better representation by integrating these two models together. To this end, this paper proposes a novel coding algorithm, called Locality-Constrained Collaborative Representation (LCCR), which improves the robustness and discrimination of data representation by introducing a kind of local consistency. The locality term derives from a biologic observation that the similar inputs have similar code. The objective function of LCCR has an analytical solution, and it does not involve local minima. The empirical studies based on four public facial databases, ORL, AR, Extended Yale B, and Multiple PIE, show that LCCR is promising in recognizing human faces from frontal views with varying expression and illumination, as well as various corruptions and occlusions.

Citations (97)

Summary

We haven't generated a summary for this paper yet.