Bounds on the Average Sensitivity of Nested Canalizing Functions (1209.6277v4)
Abstract: Nested canalizing Boolean (NCF) functions play an important role in biological motivated regulative networks and in signal processing, in particular describing stack filters. It has been conjectured that NCFs have a stabilizing effect on the network dynamics. It is well known that the average sensitivity plays a central role for the stability of (random) Boolean networks. Here we provide a tight upper bound on the average sensitivity for NCFs as a function of the number of relevant input variables. As conjectured in literature this bound is smaller than 4/3 This shows that a large number of functions appearing in biological networks belong to a class that has very low average sensitivity, which is even close to a tight lower bound.