Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian inverse problems with non-conjugate priors (1209.6156v3)

Published 27 Sep 2012 in math.ST and stat.TH

Abstract: We investigate the frequentist posterior contraction rate of nonparametric Bayesian procedures in linear inverse problems in both the mildly and severely ill-posed cases. A theorem is proved in a general Hilbert space setting under approximation-theoretic assumptions on the prior. The result is applied to non-conjugate priors, notably sieve and wavelet series priors, as well as in the conjugate setting. In the mildly ill-posed setting minimax optimal rates are obtained, with sieve priors being rate adaptive over Sobolev classes. In the severely ill-posed setting, oversmoothing the prior yields minimax rates. Previously established results in the conjugate setting are obtained using this method. Examples of applications include deconvolution, recovering the initial condition in the heat equation and the Radon transform.

Summary

We haven't generated a summary for this paper yet.