Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Abelian Repetitions in Sturmian Words (1209.6013v3)

Published 26 Sep 2012 in cs.FL, cs.DM, and math.CO

Abstract: We investigate abelian repetitions in Sturmian words. We exploit a bijection between factors of Sturmian words and subintervals of the unitary segment that allows us to study the periods of abelian repetitions by using classical results of elementary Number Theory. We prove that in any Sturmian word the superior limit of the ratio between the maximal exponent of an abelian repetition of period $m$ and $m$ is a number $\geq\sqrt{5}$, and the equality holds for the Fibonacci infinite word. We further prove that the longest prefix of the Fibonacci infinite word that is an abelian repetition of period $F_j$, $j>1$, has length $F_j(F_{j+1}+F_{j-1} +1)-2$ if $j$ is even or $F_j(F_{j+1}+F_{j-1})-2$ if $j$ is odd. This allows us to give an exact formula for the smallest abelian periods of the Fibonacci finite words. More precisely, we prove that for $j\geq 3$, the Fibonacci word $f_j$ has abelian period equal to $F_n$, where $n = \lfloor{j/2}\rfloor$ if $j = 0, 1, 2\mod{4}$, or $n = 1 + \lfloor{j/2}\rfloor$ if $ j = 3\mod{4}$.

Citations (10)

Summary

We haven't generated a summary for this paper yet.