Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Introduction to Khovanov Homologies. II. Reduced Jones superpolynomials (1209.5109v1)

Published 23 Sep 2012 in math-ph, hep-th, math.GT, and math.MP

Abstract: A second part of detailed elementary introduction into Khovanov homologies. This part is devoted to reduced Jones superpolynomials. The story is still about a hypercube of resolutions of a link diagram. Each resolution is a collection of non-intersecting cycles, and one associates a 2-dimensional vector space with each cycle. Reduced superpolynomial arises when for all cycles, containing a "marked" edge of the link diagram, the vector space is reduced to 1-dimensional. The rest remains the same. Edges of the hypercube are associated with cut-and-join operators, acting on the cycles. Superpartners of these operators can be combined into differentials of a complex, and superpolynomial is the Poincare polynomial of this complex. HOMFLY polynomials are practically the same in reduced and unreduced case, but superpolynomials are essentially different, already in the simplest examples of trefoil and figure-eight knot.

Summary

We haven't generated a summary for this paper yet.