Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a generalized maximum principle for a transport-diffusion model with $\log$-modulated fractional dissipation (1209.3701v1)

Published 17 Sep 2012 in math.AP

Abstract: We consider a transport-diffusion equation of the form $\partial_t \theta +v \cdot \nabla \theta + \nu \A \theta =0$, where $v$ is a given time-dependent vector field on $\mathbb Rd$. The operator $\A$ represents log-modulated fractional dissipation: $\A=\frac {|\nabla|{\gamma}}{\log{\beta}(\lambda+|\nabla|)}$ and the parameters $\nu\ge 0$, $\beta\ge 0$, $0\le \gamma \le 2$, $\lambda>1$. We introduce a novel nonlocal decomposition of the operator $\A$ in terms of a weighted integral of the usual fractional operators $|\nabla|{s}$, $0\le s \le \gamma$ plus a smooth remainder term which corresponds to an $L1$ kernel. For a general vector field $v$ (possibly non-divergence-free) we prove a generalized $L\infty$ maximum principle of the form $ |\theta(t)|\infty \le e{Ct} |\theta_0|{\infty}$ where the constant $C=C(\nu,\beta,\gamma)>0$. In the case $\text{div}(v)=0$ the same inequality holds for $|\theta(t)|_p$ with $1\le p \le \infty$. At the cost of an exponential factor, this extends a recent result of Hmidi (2011) to the full regime $d\ge 1$, $0\le \gamma \le 2$ and removes the incompressibility assumption in the $L\infty$ case.

Summary

We haven't generated a summary for this paper yet.