Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

A spatio-spectral hybridization for edge preservation and noisy image restoration via local parametric mixtures and Lagrangian relaxation (1209.1826v1)

Published 9 Sep 2012 in stat.ME, cs.CV, and stat.AP

Abstract: This paper investigates a fully unsupervised statistical method for edge preserving image restoration and compression using a spatial decomposition scheme. Smoothed maximum likelihood is used for local estimation of edge pixels from mixture parametric models of local templates. For the complementary smooth part the traditional L2-variational problem is solved in the Fourier domain with Thin Plate Spline (TPS) regularization. It is well known that naive Fourier compression of the whole image fails to restore a piece-wise smooth noisy image satisfactorily due to Gibbs phenomenon. Images are interpreted as relative frequency histograms of samples from bi-variate densities where the sample sizes might be unknown. The set of discontinuities is assumed to be completely unsupervised Lebesgue-null, compact subset of the plane in the continuous formulation of the problem. Proposed spatial decomposition uses a widely used topological concept, partition of unity. The decision on edge pixel neighborhoods are made based on the multiple testing procedure of Holms. Statistical summary of the final output is decomposed into two layers of information extraction, one for the subset of edge pixels and the other for the smooth region. Robustness is also demonstrated by applying the technique on noisy degradation of clean images.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube