Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometry of the energy landscape of the self-gravitating ring (1209.1821v1)

Published 9 Sep 2012 in cond-mat.stat-mech

Abstract: We study the global geometry of the energy landscape of a simple model of a self-gravitating system, the self-gravitating ring (SGR). This is done by endowing the configuration space with a metric such that the dynamical trajectories are identified with geodesics. The average curvature and curvature fluctuations of the energy landscape are computed by means of Monte Carlo simulations and, when possible, of a mean-field method, showing that these global geometric quantities provide a clear geometric characterization of the collapse phase transition occurring in the SGR as the transition from a flat landscape at high energies to a landscape with mainly positive but fluctuating curvature in the collapsed phase. Moreover, curvature fluctuations show a maximum in correspondence with the energy of a possible further transition, occurring at lower energies than the collapse one, whose existence had been previously conjectured on the basis of a local analysis of the energy landscape and whose effect on the usual thermodynamic quantities, if any, is extremely weak. We also estimate the largest Lyapunov exponent $\lambda$ of the SGR using the geometric observables. The geometric estimate always gives the correct order of magnitude of $\lambda$ and is also quantitatively correct at small energy densities and, in the limit $N\to\infty$, in the whole homogeneous phase.

Summary

We haven't generated a summary for this paper yet.