Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Triangle-free intersection graphs of line segments with large chromatic number (1209.1595v5)

Published 7 Sep 2012 in math.CO, cs.CG, and cs.DM

Abstract: In the 1970s, Erdos asked whether the chromatic number of intersection graphs of line segments in the plane is bounded by a function of their clique number. We show the answer is no. Specifically, for each positive integer $k$, we construct a triangle-free family of line segments in the plane with chromatic number greater than $k$. Our construction disproves a conjecture of Scott that graphs excluding induced subdivisions of any fixed graph have chromatic number bounded by a function of their clique number.

Citations (112)

Summary

We haven't generated a summary for this paper yet.