Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Yangians and quantizations of slices in the affine Grassmannian (1209.0349v2)

Published 3 Sep 2012 in math.RA, math.AG, and math.QA

Abstract: We study quantizations of transverse slices to Schubert varieties in the affine Grassmannian. The quantization is constructed using quantum groups called shifted Yangians --- these are subalgebras of the Yangian we introduce which generalize the Brundan-Kleshchev shifted Yangian to arbitrary type. Building on ideas of Gerasimov-Kharchev-Lebedev-Oblezin, we prove that a quotient of the shifted Yangian quantizes a scheme supported on the transverse slices, and we formulate a conjectural description of the defining ideal of these slices which implies that the scheme is reduced. This conjecture also implies the conjectural quantization of the Zastava spaces for PGL(n) of Finkelberg-Rybnykov.

Summary

We haven't generated a summary for this paper yet.