Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Brauer-Thrall for totally reflexive modules over local rings of higher dimension (1208.5730v3)

Published 28 Aug 2012 in math.AC and math.RT

Abstract: Let $R$ be a commutative Noetherian local ring. Assume that $R$ has a pair ${x,y}$ of exact zerodivisors such that $\dim R/(x,y)\ge2$ and all totally reflexive $R/(x)$-modules are free. We show that the first and second Brauer--Thrall type theorems hold for the category of totally reflexive $R$-modules. More precisely, we prove that, for infinitely many integers $n$, there exists an indecomposable totally reflexive $R$-module of multiplicity $n$. Moreover, if the residue field of $R$ is infinite, we prove that there exist infinitely many isomorphism classes of indecomposable totally reflexive $R$-modules of multiplicity $n$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.