Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint-ViVo: Selecting and Weighting Visual Words Jointly for Bag-of-Features based Tissue Classification in Medical Images (1208.3822v2)

Published 19 Aug 2012 in cs.CV and stat.ML

Abstract: Automatically classifying the tissues types of Region of Interest (ROI) in medical imaging has been an important application in Computer-Aided Diagnosis (CAD), such as classification of breast parenchymal tissue in the mammogram, classify lung disease patterns in High-Resolution Computed Tomography (HRCT) etc. Recently, bag-of-features method has shown its power in this field, treating each ROI as a set of local features. In this paper, we investigate using the bag-of-features strategy to classify the tissue types in medical imaging applications. Two important issues are considered here: the visual vocabulary learning and weighting. Although there are already plenty of algorithms to deal with them, all of them treat them independently, namely, the vocabulary learned first and then the histogram weighted. Inspired by Auto-Context who learns the features and classifier jointly, we try to develop a novel algorithm that learns the vocabulary and weights jointly. The new algorithm, called Joint-ViVo, works in an iterative way. In each iteration, we first learn the weights for each visual word by maximizing the margin of ROI triplets, and then select the most discriminate visual words based on the learned weights for the next iteration. We test our algorithm on three tissue classification tasks: identifying brain tissue type in magnetic resonance imaging (MRI), classifying lung tissue in HRCT images, and classifying breast tissue density in mammograms. The results show that Joint-ViVo can perform effectively for classifying tissues.

Summary

We haven't generated a summary for this paper yet.