Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exponential-family Random Network Models (1208.0121v1)

Published 1 Aug 2012 in stat.ME

Abstract: Random graphs, where the connections between nodes are considered random variables, have wide applicability in the social sciences. Exponential-family Random Graph Models (ERGM) have shown themselves to be a useful class of models for representing com- plex social phenomena. We generalize ERGM by also modeling nodal attributes as random variates, thus creating a random model of the full network, which we call Exponential-family Random Network Models (ERNM). We demonstrate how this framework allows a new formu- lation for logistic regression in network data. We develop likelihood-based inference for the model and an MCMC algorithm to implement it. This new model formulation is used to analyze a peer social network from the National Lon- gitudinal Study of Adolescent Health. We model the relationship between substance use and friendship relations, and show how the results differ from the standard use of logistic regression on network data.

Summary

We haven't generated a summary for this paper yet.