Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Optimal Stopping of a One-dimensional Diffusion (1207.5491v1)

Published 23 Jul 2012 in math.PR

Abstract: We consider a one-dimensional diffusion which solves a stochastic differential equation with Borel-measurable coefficients in an open interval. We allow for the endpoints to be inaccessible or absorbing. Given a Borel-measurable function $r$ that is uniformly bounded away from 0, we establish a new analytic representation of the $r$-potential of a continuous additive functional of the diffusion. We also characterize the value function of an optimal stopping problem with general reward function as the unique solution of a variational inequality (in the sense of distributions) with appropriate growth or boundary conditions. Furthermore, we establish several other characterisations of the solution to the optimal stopping problem, including a generalisation of the so-called "principle of smooth fit".

Summary

We haven't generated a summary for this paper yet.