Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimally Infrequent Itemset Mining using Pattern-Growth Paradigm and Residual Trees (1207.4958v1)

Published 11 Jul 2012 in cs.DB

Abstract: Itemset mining has been an active area of research due to its successful application in various data mining scenarios including finding association rules. Though most of the past work has been on finding frequent itemsets, infrequent itemset mining has demonstrated its utility in web mining, bioinformatics and other fields. In this paper, we propose a new algorithm based on the pattern-growth paradigm to find minimally infrequent itemsets. A minimally infrequent itemset has no subset which is also infrequent. We also introduce the novel concept of residual trees. We further utilize the residual trees to mine multiple level minimum support itemsets where different thresholds are used for finding frequent itemsets for different lengths of the itemset. Finally, we analyze the behavior of our algorithm with respect to different parameters and show through experiments that it outperforms the competing ones.

Citations (59)

Summary

We haven't generated a summary for this paper yet.