2000 character limit reached
Torus knots and the rational DAHA (1207.4523v1)
Published 18 Jul 2012 in math.RT, hep-th, math.AG, and math.GT
Abstract: We conjecturally extract the triply graded Khovanov-Rozansky homology of the (m, n) torus knot from the unique finite dimensional simple representation of the rational DAHA of type A, rank n - 1, and central character m/n. The conjectural differentials of Gukov, Dunfield and the third author receive an explicit algebraic expression in this picture, yielding a prescription for the doubly graded Khovanov-Rozansky homologies. We match our conjecture to previous conjectures of the first author relating knot homology to q, t-Catalan numbers, and of the last three authors relating knot homology to Hilbert schemes on singular curves.