Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On three-color Ramsey number of paths (1207.3771v1)

Published 16 Jul 2012 in math.CO

Abstract: Let $G_1, G_2, ..., G_t$ be graphs. The multicolor Ramsey number $R(G_1, G_2, ..., G_t)$ is the smallest positive integer $n$ such that if the edges of complete graph $K_n$ are partitioned into $t$ disjoint color classes giving $t$ graphs $H_1,H_2,...,H_t$, then at least one $H_i$ has a subgraph isomorphic to $G_i$. In this paper, we prove that if $(n,m)\neq (3,3), (3,4)$ and $m\geq n$, then $R(P_3,P_n,P_m)=R(P_n,P_m)=m+\lfloor \frac{n}{2}\rfloor-1$. Consequently $R(P_3,mK_2,nK_2)=2m+n-1$ for $m\geq n\geq 3$.

Summary

We haven't generated a summary for this paper yet.