Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Torsion Limits and Riemann-Roch Systems for Function Fields and Applications (1207.2936v2)

Published 12 Jul 2012 in math.AG, cs.CR, math.CO, and math.NT

Abstract: The Ihara limit (or -constant) $A(q)$ has been a central problem of study in the asymptotic theory of global function fields (or equivalently, algebraic curves over finite fields). It addresses global function fields with many rational points and, so far, most applications of this theory do not require additional properties. Motivated by recent applications, we require global function fields with the additional property that their zero class divisor groups contain at most a small number of $d$-torsion points. We capture this by the torsion limit, a new asymptotic quantity for global function fields. It seems that it is even harder to determine values of this new quantity than the Ihara constant. Nevertheless, some non-trivial lower- and upper bounds are derived. Apart from this new asymptotic quantity and bounds on it, we also introduce Riemann-Roch systems of equations. It turns out that this type of equation system plays an important role in the study of several other problems in areas such as coding theory, arithmetic secret sharing and multiplication complexity of finite fields etc. Finally, we show how our new asymptotic quantity, our bounds on it and Riemann-Roch systems can be used to improve results in these areas.

Citations (29)

Summary

We haven't generated a summary for this paper yet.