Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compression of next-generation sequencing reads aided by highly efficient de novo assembly (1207.2424v1)

Published 10 Jul 2012 in q-bio.QM, cs.DS, and q-bio.GN

Abstract: We present Quip, a lossless compression algorithm for next-generation sequencing data in the FASTQ and SAM/BAM formats. In addition to implementing reference-based compression, we have developed, to our knowledge, the first assembly-based compressor, using a novel de novo assembly algorithm. A probabilistic data structure is used to dramatically reduce the memory required by traditional de Bruijn graph assemblers, allowing millions of reads to be assembled very efficiently. Read sequences are then stored as positions within the assembled contigs. This is combined with statistical compression of read identifiers, quality scores, alignment information, and sequences, effectively collapsing very large datasets to less than 15% of their original size with no loss of information. Availability: Quip is freely available under the BSD license from http://cs.washington.edu/homes/dcjones/quip.

Citations (185)

Summary

We haven't generated a summary for this paper yet.