Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compressed Sensing of Approximately-Sparse Signals: Phase Transitions and Optimal Reconstruction (1207.2079v1)

Published 9 Jul 2012 in cs.IT, cond-mat.stat-mech, math.IT, math.ST, and stat.TH

Abstract: Compressed sensing is designed to measure sparse signals directly in a compressed form. However, most signals of interest are only "approximately sparse", i.e. even though the signal contains only a small fraction of relevant (large) components the other components are not strictly equal to zero, but are only close to zero. In this paper we model the approximately sparse signal with a Gaussian distribution of small components, and we study its compressed sensing with dense random matrices. We use replica calculations to determine the mean-squared error of the Bayes-optimal reconstruction for such signals, as a function of the variance of the small components, the density of large components and the measurement rate. We then use the G-AMP algorithm and we quantify the region of parameters for which this algorithm achieves optimality (for large systems). Finally, we show that in the region where the GAMP for the homogeneous measurement matrices is not optimal, a special "seeding" design of a spatially-coupled measurement matrix allows to restore optimality.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com