Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asynchronous Dynamic Bayesian Networks (1207.1398v1)

Published 4 Jul 2012 in cs.AI

Abstract: Systems such as sensor networks and teams of autonomous robots consist of multiple autonomous entities that interact with each other in a distributed, asynchronous manner. These entities need to keep track of the state of the system as it evolves. Asynchronous systems lead to special challenges for monitoring, as nodes must update their beliefs independently of each other and no central coordination is possible. Furthermore, the state of the system continues to change as beliefs are being updated. Previous approaches to developing distributed asynchronous probabilistic reasoning systems have used static models. We present an approach using dynamic models, that take into account the way the system changes state over time. Our approach, which is based on belief propagation, is fully distributed and asynchronous, and allows the world to keep on changing as messages are being sent around. Experimental results show that our approach compares favorably to the factored frontier algorithm.

Citations (25)

Summary

We haven't generated a summary for this paper yet.