Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Counterfactual Reasoning in Linear Structural Equation Models (1207.1376v1)

Published 4 Jul 2012 in cs.AI and stat.ME

Abstract: Consider the case where causal relations among variables can be described as a Gaussian linear structural equation model. This paper deals with the problem of clarifying how the variance of a response variable would have changed if a treatment variable were assigned to some value (counterfactually), given that a set of variables is observed (actually). In order to achieve this aim, we reformulate the formulas of the counterfactual distribution proposed by Balke and Pearl (1995) through both the total effects and a covariance matrix of observed variables. We further extend the framework of Balke and Pearl (1995) from point observations to interval observations, and from an unconditional plan to a conditional plan. The results of this paper enable us to clarify the properties of counterfactual distribution and establish an optimal plan.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.