Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating Node Influenceability in Social Networks (1207.0913v1)

Published 4 Jul 2012 in cs.SI, cs.DB, and physics.soc-ph

Abstract: Influence analysis is a fundamental problem in social network analysis and mining. The important applications of the influence analysis in social network include influence maximization for viral marketing, finding the most influential nodes, online advertising, etc. For many of these applications, it is crucial to evaluate the influenceability of a node. In this paper, we study the problem of evaluating influenceability of nodes in social network based on the widely used influence spread model, namely, the independent cascade model. Since this problem is #P-complete, most existing work is based on Naive Monte-Carlo (\nmc) sampling. However, the \nmc estimator typically results in a large variance, which significantly reduces its effectiveness. To overcome this problem, we propose two families of new estimators based on the idea of stratified sampling. We first present two basic stratified sampling (\bss) estimators, namely \bssi estimator and \bssii estimator, which partition the entire population into $2r$ and $r+1$ strata by choosing $r$ edges respectively. Second, to further reduce the variance, we find that both \bssi and \bssii estimators can be recursively performed on each stratum, thus we propose two recursive stratified sampling (\rss) estimators, namely \rssi estimator and \rssii estimator. Theoretically, all of our estimators are shown to be unbiased and their variances are significantly smaller than the variance of the \nmc estimator. Finally, our extensive experimental results on both synthetic and real datasets demonstrate the efficiency and accuracy of our new estimators.

Citations (2)

Summary

We haven't generated a summary for this paper yet.