Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nearly optimal minimax estimator for high-dimensional sparse linear regression (1206.6536v3)

Published 27 Jun 2012 in math.ST and stat.TH

Abstract: We present estimators for a well studied statistical estimation problem: the estimation for the linear regression model with soft sparsity constraints ($\ell_q$ constraint with $0<q\leq1$) in the high-dimensional setting. We first present a family of estimators, called the projected nearest neighbor estimator and show, by using results from Convex Geometry, that such estimator is within a logarithmic factor of the optimal for any design matrix. Then by utilizing a semi-definite programming relaxation technique developed in [SIAM J. Comput. 36 (2007) 1764-1776], we obtain an approximation algorithm for computing the minimax risk for any such estimation task and also a polynomial time nearly optimal estimator for the important case of $\ell_1$ sparsity constraint. Such results were only known before for special cases, despite decades of studies on this problem. We also extend the method to the adaptive case when the parameter radius is unknown.

Summary

We haven't generated a summary for this paper yet.