Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structured Learning from Partial Annotations (1206.6421v1)

Published 27 Jun 2012 in cs.LG and stat.ML

Abstract: Structured learning is appropriate when predicting structured outputs such as trees, graphs, or sequences. Most prior work requires the training set to consist of complete trees, graphs or sequences. Specifying such detailed ground truth can be tedious or infeasible for large outputs. Our main contribution is a large margin formulation that makes structured learning from only partially annotated data possible. The resulting optimization problem is non-convex, yet can be efficiently solve by concave-convex procedure (CCCP) with novel speedup strategies. We apply our method to a challenging tracking-by-assignment problem of a variable number of divisible objects. On this benchmark, using only 25% of a full annotation we achieve a performance comparable to a model learned with a full annotation. Finally, we offer a unifying perspective of previous work using the hinge, ramp, or max loss for structured learning, followed by an empirical comparison on their practical performance.

Citations (40)

Summary

We haven't generated a summary for this paper yet.