Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
90 tokens/sec
DeepSeek R1 via Azure Premium
55 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
207 tokens/sec
2000 character limit reached

Local Loss Optimization in Operator Models: A New Insight into Spectral Learning (1206.6393v1)

Published 27 Jun 2012 in cs.LG and stat.ML

Abstract: This paper re-visits the spectral method for learning latent variable models defined in terms of observable operators. We give a new perspective on the method, showing that operators can be recovered by minimizing a loss defined on a finite subset of the domain. A non-convex optimization similar to the spectral method is derived. We also propose a regularized convex relaxation of this optimization. We show that in practice the availabilty of a continuous regularization parameter (in contrast with the discrete number of states in the original method) allows a better trade-off between accuracy and model complexity. We also prove that in general, a randomized strategy for choosing the local loss will succeed with high probability.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube