2000 character limit reached
Countable Random Sets: Uniqueness in Law and Constructiveness (1206.6227v2)
Published 27 Jun 2012 in math.PR
Abstract: The first part of this article deals with theorems on uniqueness in law for \sigma-finite and constructive countable random sets, which in contrast to the usual assumptions may have points of accumulation. We discuss and compare two approaches on uniqueness theorems: First, the study of generators for \sigma-fields used in this context and, secondly, the analysis of hitting functions. The last section of this paper deals with the notion of constructiveness. We will prove a measurable selection theorem and a decomposition theorem for constructive countable random sets, and study constructive countable random sets with independent increments.