Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic properties of adaptive maximum likelihood estimators in latent variable models (1206.5687v4)

Published 25 Jun 2012 in math.ST and stat.TH

Abstract: Latent variable models have been widely applied in different fields of research in which the constructs of interest are not directly observable, so that one or more latent variables are required to reduce the complexity of the data. In these cases, problems related to the integration of the likelihood function of the model arise since analytical solutions do not exist. In the recent literature, a numerical technique that has been extensively applied to estimate latent variable models is the adaptive Gauss-Hermite quadrature. It provides a good approximation of the integral, and it is more feasible than classical numerical techniques in presence of many latent variables and/or random effects. In this paper, we formally investigate the properties of maximum likelihood estimators based on adaptive quadratures used to perform inference in generalized linear latent variable models.

Summary

We haven't generated a summary for this paper yet.